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—— Abstract

We study the Distance-k-Dispersion (D-k-D) problem for synchronous mobile agents in a 1-interval
connected ring network having n nodes and with [ agents, where 3 <1 < | % |, without the assumption
of chirality (a common sense of direction for the agents). This generalizes the classical dispersion
problem by requiring that agents maintain a minimum distance of k hops from each other, with the
special case k = 1 corresponding to standard dispersion.

The contribution in this work is threefold. Our first contribution is a novel method that enables
agents to simulate chirality using only local information and bounded memory. This technique
demonstrates that chirality is not a fundamental requirement for coordination in this model.

Building on this, our second contribution partially resolves an open question posed by Agarwalla
et al. (ICDCN 2018), who considered the same model (1-interval connected rings, synchronous
agents, no chirality). We prove that D-k-D—and thus dispersion is solvable from arbitrary initial
configurations under these assumptions (excluding vertex permutation dynamism) for any size of the
ring network which was earlier limited to only odd-sized ring or a ring of size four.

Finally, we present an algorithm for D-k-D in this setting that works in O(In) rounds, completing
the constructive side of our result.

Altogether, our findings significantly extend the theoretical understanding of mobile agent
coordination in dynamic networks and clarify the role of chirality in distributed computation.
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1 Introduction

In recent years, mobile agents in distributed networks have emerged as a significant research
area for solving fundamental coordination problems. These agents are generally simple,
autonomous, and low-cost mobile units that can collaboratively solve tasks such as gathering,
exploration, flocking, and dispersion.

This paper focuses on the dispersion problem, first introduced in [2]. In this problem,
I mobile agents are deployed on a graph with n nodes, and the goal of the problem is to
make the agents reposition themselves autonomously so that each node contains at most
[%] agents. Note that, when [ > n, dispersion ensures that each node holds at most one
agent. Dispersion is closely related to other well-known problems such as scattering [3],
exploration [6], self-deployment [7, 24], and load balancing [23], and has practical applications
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in many real world scenarios such as relocating self-driving vehicles to charging stations,
deploying robots in hazardous environments, and more.

We study a generalization of this problem known as Distance-k-Dispersion (D-k-D),
introduced in [22]. The goal of this problem is to reposition agents such that the distance
between any two agents on the graph is at least k. By definition, this problem inherits all
practical applications of dispersion, while also broadening its scope. For instance, if each
agent has a sensing radius of k£ hops, solving D-k-D helps maximize sensing coverage across
the network by minimizing the overlapping covering area.

In this work, we focus on solving the D-k-D problem on a dynamic ring network, specifically
under the 1-interval connectivity model (i.e., at any particular round at most one edge of the
ring might stay missing), with [ > 3 agents starting from any arbitrary initial deployment,
and without assuming chirality (i.e., no common agreement on clockwise or counterclockwise
direction). It is assumed that the agents are capable of local communication (i.e., agents can
communicate only when they are on the same node) and have bounded memory.

1.1 Literature, Background, and Motivation

Over the last decade, the dispersion problem has been studied extensively across a range
of models and network topologies [1, 2, 4, 5, 8, 9, 11, 10, 12, 13, 15, 14, 16, 17, 18, 19, 20,
21, 25, 26], owing to its practical relevance. Many real-world scenarios involving ! agents
and n spatially distributed resources can be modeled as a dispersion problem to minimize
coordination time and system cost. For example, smart electric vehicles coordinating to
reach available charging stations can be modeled as a dispersion task—driving to a station
may take minutes, but recharging takes hours, so efficient coordination is crucial.

The Distance-k Dispersion problem generalizes dispersion and has its own set of real-world
applications. For instance, in environments where each agent can sense or affect a region
within £ hops, D-k-D helps ensure maximum effective coverage by maintaining sufficient
separation between agents.

In the context of ring networks, Agarwalla et al. [1] studied dispersion in dynamic rings
under two key types of network dynamism:

1-interval connectivity, where in any round, at most one edge (chosen arbitrarily by the

adversary) may be missing.

Vertex permutation, where the adversary can reorder nodes arbitrarily in each round.

Assuming local communication (i.e., agents can communicate only when co-located), the
authors proposed several algorithms under different assumptions:
1. With chirality and full visibility, they presented VP-1-Interval Chain to solve dispersion.
2. In achiral settings where agents are co-located with full visibility, first they used No-Chiral-
Preprocess to establish chirality, followed by VP-1-Interval Chain to achieve dispersion.
This approach requires agents to store the smallest ID, thus requiring memory.
3. When agents are scattered, they proposed Achiral-Odd-VP-1-Interval-Chain and Achiral-
FEven4-VP-1-Interval-Chain to solve dispersion, but only for rings with an odd number of
nodes or exactly four nodes, respectively. The latter also requires memory.

These results naturally raise the following question:

Is chirality necessary to solve dispersion on a l-interval connected ring with
n = 2n’ nodes for n/(> 2) € N, under the same model with memory as in [1]?

Our primary goal in this paper is to address this question by exploring the achiral setting
in greater depth under the same assumptions as in [1] (excluding vertex permutation), while
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allowing agents to have memory. This investigation reveals important insights into the
relative power of the model with and without chirality. Building on these findings, we further
study the D-k-D problem in the same model, partially resolving the open question posed in [1]
about solving dispersion from arbitrary configurations on even-sized 1-interval connected
rings (excluding the vertex permutation dynamism). A summary of our results is presented
in the following subsection.

1.2 Qur Contribution

In this work, we study the problem of D-k-D on a 1-interval connected ring under the same
bounded memory model described in [2]. Here, we consider the 1-interval connectivity dy-
namism only, while excluding the vertex permutation. This is because, in vertex permutation
dynamism, D-k-D is not at all solvable if £ > 2, as the adversary can always swap vertices
to make the distance between two agents less than k. While our original objective was to
solve the D-k-D problem from any arbitrary configuration under the bounded-memory model
described in [1], excluding vertex permutation dynamism (hereafter referred to as M), our
investigation led to a deeper and unexpected insight:

The model M without chirality is computationally equivalent to M with chirality.

To formally establish this equivalence, we introduce a novel algorithm, ACHIRAL-2-
CHIRAL, which enables a team of [ > 3 agents, starting without any common sense of
direction, to collectively establish chirality. The algorithm completes its execution within
O(In) synchronous rounds, where [ is the number of agents and n is the number of nodes
of the ring. This result is significant, as it shows that agents can simulate the benefits
of chirality using only local communication, full visibility, and bounded memory (O(logn)
specifically), even in dynamic settings.

Building on this, we then address the original D-k-D problem. Once chirality is established,
agents execute our second algorithm, DISPERSED to achieve a dispersed configuration and
then the third algorithm, DISPERSED-T0-k—DISPERSED, which solves the D-k-D problem in
dynamic rings and guarantees termination within O(In) rounds, where n is the size of the
ring.

Together, these results not only settle the open question posed in [1] about solving
dispersion (equivalent to solving D-k-D where k = 1) in even-sized dynamic rings without
chirality, under bounded memory and full visibility partially (only for 1-interval connectivity
dynamism), but also introduce a powerful framework for transforming achiral systems into
chiral ones within the same model, without any additional assumptions. The following
Table 1 provides a comparative overview of this work with previous literature.

2 Preliminaries

In this section, we discuss the preliminaries, including the model assumed for agents, the
scheduler, and other relevant components, along with some necessary definitions, that will
be used throughout the paper. In the following subsection, we first describe the agent model
and the ring structure. In the subsequent sections, several necessary terms and the problem
under consideration are formally defined.

2.1 Model and Problem Definition

Let R = (Vg, Er) be a connected network where |vg| =n and V v € Vg, deg(v) = 2. We
call R a ring network with n vertices. Let A = {rq,r2, -7} be a set of | agents arbitrarily
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Aspect Agawalla et al. [1] (ICDCN, | This work
2018)
Problem Dispersion (k=1) Distance-k-Dispersion for any k

such that || >k >1

Initial Chirality No No
Agreement
Achieves Chirality No Yes

Agreement in between

Dynamism of the
ring

1-interval connectivity + vertex
permutation

Only 1-interval connectivity;
vertex permutation makes the
problem impossible if k& > 2

Initial Configuration

Any arbitrary configuration

Any arbitrary configuration

Size of ring (n)

n is either odd or four

n can be any natural number

Time Complexity

O(n)

O(In), where [ is the number of

agents

Table 1 Comparison with Agawalla et al. (ICDCN 2018)

deployed on the nodes of R, where [ > 3. Each of the agents has the same computational

capabilities with a bounded persistent memory of O(logn) bits. Each of the agents has a

unique ID in the range of [1,n°] for some constant c. We denote the ID of an agent r; as

ID(r;) and the z—th bit of the ID of r; from right as ID,(r;). The number of bits used

to store ID for each agent is B. Thus B = O(logn). The agents are autonomous (i.e., no

central control), identical (i.e., physically indistinguishable), and homogeneous (i.e., execute
the same algorithm). One or more agents can occupy the same node at a particular time. If
at a particular routine, more than one agent is at a node then we call that node a multiplicity
at that time. Otherwise, if a node has only one agent at any particular round, that node
is called singleton at that time. The agents do not have any chirality agreement but their
clockwise direction is consistent throughout the execution.

The agents operate in a synchronous setting, where time is divided into rounds of equal
duration. Each round consists of the following four stages:

1. Edge Removal (by the adversary): At the beginning of each round, the adversary
may arbitrarily remove one edge from the ring R, or leave the ring unchanged.

2. Look: Each agent, with full visibility, captures a snapshot of the entire ring, identifying
singleton nodes, multiplicity nodes, unoccupied nodes, and the location of the missing
edge, if any. It also accesses its memory and that of any co-located agents (Known as
Local Communication). This enables the agent to determine the exact number of agents
at its current node—an ability known as local strong multiplicity detection. For other
nodes, however, the agent can only distinguish between singleton and multiplicity without
knowing the exact agent count, referred to as global weak multiplicity detection.

3. Compute: Using the information collected during the Look phase, each agent runs the
given algorithm to determine its next action.

4. Move: Based on the output of the Compute phase, each agent updates its memory and
moves to an adjacent node, as specified by the algorithm. The move is assumed to be
instantaneous, i.e., at any particular round, during the Look stage all agents are seen to
be on nodes of the ring.

Dynamism of the ring R: The ring R is an l-interval connected ring. In a l-interval

connected ring at most one edge of R might stay missing in any particular round. We now

proceed to define the problem formally in the subsection.
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» Definition 1 (Problem Definition: Distance-k-Dispersion). Let | agents (3 <1 < [%])
reside on an I1-interval connected ring R with n nodes. Initially, the agents are placed
arbitrarily on the nodes of the ring. The problem Distance-k-Dispersion (D-k-D) asks to
reposition the agents to achieve a configuration that satisfies the following:

(i) The occupied node contains exactly one agent.

(ii) The distance between any two occupied nodes is at least k.

(iii) There exists at least one pair of nodes whose distance is exactly k.

We need to define some necessary terms as preliminaries. The definitions are in the following
subsection. Some diagrams (Figure 1 and Figure 2) are given for better visualization of the
definitions.

2.2 Definitions and Preliminaries

» Definition 2 (Configuration at time t). Configuration at time t or, C(t) is the 3-tuple
(R, ey, ft) where R is the ring network on which agents are deployed, e; € {&} U Ex such
that at t, edge e; is missing in R, and f; : Vr — N be a function such that fi(v) denotes the
number of agents on v at time t.

In a configuration C(t), we call a vertex v € Vg occupied if f;(v) # 0. An occupied vertex v
in a configuration C(t), is called singleton if f;(v) = 1. v is called multiplicity if fi(v) > 1.
Also, in a configuration C(t) = (R, ey, ft), the vertex of agent r is denoted as v:(r). If the
time ¢ is clear from context, we use the symbol v(r). If fi(v) <1 for all v € Vi we call the
configuration C(t) dispersed.

Henceforth, CW and CCW denote the clockwise and counterclockwise direction respec-
tively. Let v and v be two vertices of a ring R and D € {CW,CCW} be a direction. An
arc from u to v in direction D, denoted by (u,v)p, is the subgraph induced by the set of
all vertices in between u and v starting from w in the direction D including v and v. We
define the distance from u to v in direction D as the length of the arc (u,v)p and denote it
as dp(u,v).

» Definition 3 (Adjacent occupied node pair). Let C(t) = (R, e, fi) be a configuration at
some time t. Two nodes, u,v in R are said to form adjacent occupied node pairs in C(t) if
there exists a direction D € {CW,CCW} such that both of the following conditions hold in
C(t).

L fi(u), fi(v) #0

2. Vw € (u,v)p where w is not u or v, fi(w) =0

» Definition 4 (Chain). Let C(t) = (R, e, ft) be a configuration at time t. Let (u,v)p be an

arc for some u,v € Vg and D € {CW,CCW?}. The arc (u,v)p is called a chain if all the

following conditions hold in C(t).

1. fi(z) #0Vz € (u,v)p

2. If x,, and x, be the adjacent nodes of u and v respectively such that x,,x, ¢ (u,v)p (if
exists), then fi(xy,) = fe(z,) = 0.

We denote this chain as Cp(u,v)

We call (u,v)p the arc of the chain Cp(u,v). A chain Cp(u,v) is called an i—chain if
dp(u,v) = i. Two chains Cp(u,v) and Cp(x,y) are called adjacent if at least one of the two
arcs, (v,x)p or, (y,u)p has no occupied node.

In a configuration C(t), let r be an agent in a 0-chain for some t. If f;(v(r)) = 1, then we
call the chain a singleton 0-chain. Similarly if agents 1 and 7 are in same 1-chain in C(¢),
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such that v(r1) # v(re) and fi(v(r1)) = fi(v(r2)) = 1 then, we call such 1-chains Singleton
I-chain. Let in an configuration C(t) = (R, ey, ft), Cp(u,v) be a chain for some u,v € Vg
and D € {CW,CCW}. Let v and v’ be nodes adjacent to u and v respectively such that
u' v ¢ (u,v)p. We call the arc (u/,v")p the extended arc of chain Cp(u,v).

» Definition 5 (Symmetric Configuration). Let C(t) = (R, e, fi) be a configuration at time t.
If e; # & then we call C(t) symmetric if the following condition is true in C(t)
3 an i—chain Cp(u,v) such that i is odd and e; = u'v', v/, v' € (u,v)p and dp(u,u’) =
dp(v',v) where dp(u,u') < dp(u,v")

» Definition 6 (Asymmetric Configuration). Let C(t) = (R, eq, fi) be a configuration at time
t. If e # & then we call C(t) asymmetric if the following condition is true in C(t)
3 an i—chain Cp(u,v) whose extended arc be (uy,v1)p. Let fore; = u/v’, u',v'" € (u1,v1)p
and dp(u,u’') # dp(v',v1) where dp(u,u’) < dp(u,v’)

» Definition 7 (visible direction of a chain). Let Cp(u,v) be an i—chain in a configuration
C(t) = (R,et, ft) where i > 1. We say that the chain Cp(u,v) has a visible direction if for
exactly one of u and v, say w, f(w) =1 and for the vertex, say w' other than w among u
and v, fi(w') > 1.

If for a chain Cp(u,v) with visible direction in configuration C(t) = (R, ey, fi), fi(u) =1
then we say the direction of the chain is D otherwise if f;(u) > 1 then the direction is D',
where D’ is the reverse direction of D. The class of all i—chains where ¢ > 2 and all visibly
directed 1-chains is called the feasible class and is denoted as FC. On the other hand, the
class of 0-chains and 1-chains without visible direction is called the non-feasible class or

NFC.

(a) Asymmetric Configuration (b) Symmetric Configuration

Figure 1 Here in this diagram arc of each chain are marked in blue. The visibly directed chains
are marked with their corresponding direction. In each configuration the number of visibly directed
chains in D and D’ are same hence the configurations are not global. In the asymmetric configuration
in left, the missing edge defines a global direction but in the symmetric configuration the missing
edge is not defining any global direction.

» Definition 8 (Global Configuration). Let in a configuration C(t), there are p chains with vis-
ible direction such that among these p chains p1 has a direction D for some D € {CW,CCW}
and rest po = p—p1 chains has direction D' where D’ is the reverse direction of D. If p1 # pa,
then the configuration is referred to as a global configuration.
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In a global configuration, the agents without chirality can agree on a global direction. If
p1 > po then the agents can agree on direction D as the global direction. Otherwise, if
pa > p1, then the agents agree on D’ as the global direction.

» Definition 9 (k-Link ). Let C(t) = (R, ey, f;) be a dispersed configuration at time t. The
agents ro,r1,72,...,Tp are said to form a k-Link, in clockwise (CW ) direction, if for any
i€40,1,2,...,p— 1} v(riy1) is adjacent occupied node of v(r;) in direction CW and the
distance dew (v(r;),v(ri41)) < k. We denote this k-Link by (ro,71,...,7p)cw-

» Definition 10 (Sub-k-Link of a k-Link). Let there be two k-Links denoted as KS; =
(Do, b1,...bg)cw and KSs = (ag,a1,...ap)cw, we call KS1 a sub-k-Link of K.Sa if both the
following conditions hold.

1. by = a; for some i € {0,1,...,p} and by = a; for some j € {0,1,...p} wherei < j

2. by =Qiqq forany0 <z <p—i

We call a k-Link KS = (ag, a1, . ..ap)cw Mazimal if KS is not a sub-k-Link of any other
k-Link. From this point onward, whenever we mention k-Link, we will mean maximal k-Link
unless otherwise specified. For a k-Link K.S = (rg,71,...,7p)cw, the node v(rg) is called
the tail and the node v(r,) is called the head of the k-Link K'S and are denoted as H(K.S)
and T'(KS) respectively. By |KS| we define the number of agents in the k-Link

» Definition 11 (Movable k-Link). Let KS be a k-Link in some configuration C(t) for some
round t. KS is called a movable k-Link if dow (H(KS), T(KS")) > k, where KS' is the neat
k-Link in the clockwise direction of KS.

Let KS = KSy be a movable k-Link. The Clockwise Nominee Set and Counter clockwise
Nominee Set of KS denoted by NScw (KS) and NScow (KS) respectively are sets of
agents defined as follows.
If |[KS| > 2, then NSew (KS) = {r € A:r = H(KS)} and NScow (KS) = A\
NScw (KS)
Let us consider the case where |KS| = 1. Let all k-Links starting from KS = K Sy
in CCW direction be KSy, KS1,---,KS,. Let KS, be the first in the above order
such that |[KS,;| > 2. Now if # y € {1,2,---2} such that K S, is movable k-Link then
NSew (KS)={reA:r=H(KS,;),0<j<z}and NScow (KS) = A\ NScw(KS)
. Otherwise, let us consider z (where y < z < x) be such that K.S, be the last movable

k-Link in the above mentioned order NScw (KS) ={re A:r = H(KS;),0 < j <y—1}.

Then, NScow (KS) = A\{re A:r=H(KS;),z<j <z}

» Definition 12 (Elected agent set in C(t)). Let KSy, KS1,---,KS, be all k-Links in
C(t). Let I ={1,2,---a} be the index set. Now let us consider the set S(t) = {KS; :
K S; is movable k-Link and 0 <i < a}. Let I' C I such that if i € I' then, KS; € S(t). We

define the elected agent set in C(t), (denoted as EAS(t) ) to be EAS(t) = U NSew (KS;)
el

3 Description of Algorithm D-ki-D_Scattered__Dynamic_Ring

In this section, we describe the proposed algorithm D-k-D__SCATTERED__DYNAMIC_ RING
(Algorithm 1) that solves the Distance-k-Dispersion problem defined in Definition 1.
Initially, the agents do not have chirality. The algorithm works in three phases. In the

first phase, the agents execute the algorithm ACHIRAL-2-CHIRAL until chirality is achieved.

It is guaranteed that, within at most O(In) rounds, all agents will agree on chirality. This
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Up _ Uo1

Figure 2 Assuming k = 3, we have the movable k-Links which are marked with green arcs and
the k-Links with blue arcs are non-movable k-Links. Let K S be the k-Link with arc (uoo, uoo0)cw,
then NScw (K S) = agents in arc (ve, uo0)cw enclosed in the purple loop and NSccow (KS) = rest
of the agents

novel algorithm can serve as a technique to simulate chirality in systems lacking an inherent
sense of direction, under the assumptions of the considered model. After chirality is achieved,
agents then execute Algorithm 11 (DISPERSED) to achieve dispersion in the second phase.
The agents execute this algorithm until the dispersion is achieved. Note that, at this point,
the open problem regarding solving dispersion in any l-interval connected ring from any
arbitrary configuration is solved. To solve D-k-D from this dispersed configuration, the
agents execute Algorithm 12 (DISPERSED T'O k—DISPERSED) until the problem is solved.
The pseudocode of D-k-D__SCATTERED__DYNAMIC__RING is as follows.

Algorithm 1 D-k-D__SCATTERED__DyYNAMIC RING(r,C(tc)

1 if 7 has no global direction then
2 | execute ACHIRAL-2-CHIRAL

3 else

4 if in C(t.), 3 multiplicity node then

5 | execute DISPERSED(r,C(t.))

6 else

7 L execute DISPERSED TO k-DISPERSED(r,C(¢.))

In the following three subsections, we describe these three phases described above.

3.1 Algorithm ACHIRAL-2-CHIRAL

In this subsection, we describe the high-level idea of the algorithm ACHIRAL-2-CHIRAL
(Algorithm 2). The main aim of this algorithm is to ensure chirality agreement for the agents
within at most O(In) rounds, where {(> 3) is the number of agents and n is the number of
nodes in the ring. This novel algorithm not only helps to solve D-k-D, but also works as an
independent technique to achieve chirality from any achiral initial configuration under the
concerned model. Thus, this algorithm proves that the concerned model M without chirality
is computationally equivalent to M with chirality.

There are three stages of execution of this algorithm. In the first stage, the goal of this
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Algorithm 2 ACHIRAL-2-CHIRAL

1 if C(t.) is asymmetric then

2 ‘ align the direction of asymmetry with clockwise direction;
3 else

4 if C(t.) is global then

5 ‘ align the clockwise direction with global direction and terminate;
6 else

7 if state= Init then

8 ‘ execute GUIDER(r, C(t.));

9 else if state= Oscillate then

10 ‘ execute GETDIRECTED(r, C(t.));

11 else if state=PreMerge-I then

12 ‘ execute PREPROCESS(r, C(t.));

13 else if state=Merge-I then

14 ‘ execute MERGE-I(7,C(%.));

15 else if state=Merge-II then

16 ‘ execute MERGE-11(r,C(t.));

17 else if state= Roundabout then

18 | execute ROUNDTHERING-0(r,C(t.));
19 else if state=PreRoundabout then

20 | execute ROUNDTHERING-I(r,C(t.));
21 else if state=0-Merge-1 then

22 ‘ execute MERGE-0T01(r,C(¢.))

algorithm is to ensure that the configuration becomes free of chains from the class N'FC.

It is because the chains in the class N FC can’t be made visibly directed, which is required
to achieve a global direction agreement in the proposed algorithm. Next, the second and
third stage repeats alternately until the chirality is achieved. In the second stage, all visibly
undirected chains become visibly directed. So, after the completion of the second stage, all
chains in the configuration become visibly directed. In this situation, if chirality is still not
achieved, it means that the number of visibly directed chains in the clockwise direction is
equal to the number in the counterclockwise direction. To resolve this, the agents proceed

to the third stage, which ensures a reduction in the number of chains in the configuration.

However, during this process, the newly formed chains may become visibly undirected. As a
result, agents repeatedly alternate between Stage 2 and Stage 3 until the worst-case scenario,
where there is exactly one visibly directed chain. In such a configuration, all agents agree on
the direction of this chain as their global clockwise direction.

At any particular round, the agents can be in any one from the following set of states

23:9

{Init7 Roundabout, PreRoundabout, PreMerge-I,Merge-I,Merge-1I,0scillate, 0-Merge-1 }

In the initial configuration, all agents are in state Init. If in any particular round, the
configuration is global or asymmetric, then the agents can easily achieve chirality as described
in the preliminaries. Otherwise, according to the algorithm, in any particular round, an

agent executes one of the eight procedures depending upon the state it is in at that round.

In the pseudocode of the algorithm ACHIRAL-2-CHIRAL, we mention which procedure agents
execute in a particular round under a specific state. The pseudocodes of the Procedures
(excluding Procedure GUIDER()) are not included in this part due to page limitations and

CVIT 2016
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can be found in the appendix.

3.1.1 Overview of the algorithm

Here we describe a high level idea of the algorithm ACHIRAL-2-CHIRAL. In C(0) all I agents
are placed arbitrarily in an l-interval connected ring of size n. The agents do not have
chirality and has a memory of O(logn). Initially the agents are in state Init. During state
Init, an agent execute Procedure 3 (procedure GUIDER). This procedure guides the agents
to different states depending on different conditions. The pseudo code is given below.

Procedure 3 GUIDER(r,C(t.))

1 if C(t.)) has visibly directed chains then
2 if all chains are in FC then
3 if all chains are visibly directed then
4 ‘ change state to Merge-1IT;
5 else
6 Set round = 0, osc_wait = 0 and ret = 0;
7 L change state to Oscillate;
8 else
9 set round = 0;
10 change state to PreMerge-I;
11 else
12 if 3 i—chain where i <1 then
13 set round = 0;
14 change state to PreMerge-I;
15 else
16 Set round = 0, osc_wait = 0 and ret = 0;
17 L change state to Oscillate;

The main target of the algorithm is to create visibly directed chains. If visibly directed
chains in direction D is greater than visibly directed chains in direction D’ then all agents
align their clockwise direction with D.

Now, it is easy to make an visibly undirected i-chain visibly directed if i > 2 (by
performing Procedure 9 (Procedure GETDIRECTED()) which will be described in details
later in this section). So the primary target of the algorithm is to eliminate all 0-chains and
visibly undirected 1-chain by merging them with other chains. We describe the elimination
of 0-chain and visibly undirected 1-chains as follows.

Let the configuration is neither global nor asymmetric and contains 0O-chains or visi-
bly undirected 1-chains, for this the agents changes state to PreMerge-I from Init(See
Procedure 3). In this state agents execute Procedure 4 (Procedure PREPROCESS).

After the first two round of executing this procedure it is ensured that there does not
exists any 0O-chain with multiplicity and visibly undirected 1- chain where both the occupied
nodes of it are multiplicities. In this scenario there can be four cases.

Case-I: All chains are singleton 0-chains. In this case agents changes state to Roundabout.

Case-II: All chains are singleton 1-chains and all occupied nodes are singleton. In this

case agents changes state to PreRoundabout
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Procedure 4 PREPROCESS(r, C(t.))

1

if round = 0 then

2 round + +;
3 if r is an agent in a 0-chain then
4 if fi.(v(r)) > 1 and ID(r) is least on v(r) then
5 L L move in clockwise direction;
6 else if round =1 then
7 round + +;
8 if r is in a 1-chain A both vertex of the chain are multiplicity then
9 if ID(r) is lowest in v(r) then
10 L L move outward of the chain;
11 else
12 set round = 0;
13 if In C(t.) all chains are either Singleton 0-chains or, Singleton 1-chain then
14 if In C(t.) all chains are Singleton 0-chain then
15 ‘ change state to Roundabout;
16 else if In C(t.) all chains are Singleton 1-chain then
17 set move = 0;
18 change state to PreRoundabout;
19 else
20 L change state to 0-Merge-1;
21 else
22 L change state to Merge-TI;
Case-III: There exists 0-chain and 1-chains and all chains are either 0-chain or 1-
chain such that each occupied nodes are singleton. In this case agents changes state to
0-Merge-1
Case-IV: There exists an ¢—chain ¢ > 2 or visibly directed 1-chain. In this case agents
changes state to Merge-1I.
Procedure 5 ROUNDTHERING-0(r,C(t.))
1 if round < n then
2 round + +;
3 if r is not a part of an 1-chain V fi_(v(r)) =1 then
4 L move clockwise;
5 else
6 if all chains are Singleton 0-chain then
7 ‘ align clockwise direction with global clockwise direction and terminate;
8 else
9 L change state to Init;

In state Roundabout agents execute Procedure 5 ( Procedure ROUNDTHERING-0) for n

many rounds. To be specific agents move in their clockwise direction for n many rounds
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unless they merge with another O-chain. If after n rounds all are still 0-chains then they have

common clockwise sense so chirality is achieved else they move to a case similar to case II,
IIT or, IV.

Procedure 6 ROUNDTHERING-I(7,C(t.))

1 if round < B then

round + +;

if C(t.) is symmetric then

if r is a part of the 1-chain with e; then
change state to Init;

L move outwards ;

(= I B L

lse
if r is not part of a 0-chain such that f; (v(r)) > 1 then
L if ID,ounas1(r) =1 then

w
[¢)

10 move inwards of the chain;

11 else if round = B then

12 round + +;

// In this point, all chains are O- chains with 2 agents on each
occupied node

13 if ID(r) is lowest in v(r) then

14 L set move = 1;

15 move in its clockwise direction;

16 else if round = B + 1 then

17 round + +;

// In this point, all chains are 1-chains with all occupied nodes
singleton and one agent has move =1 the other has move =0 in
each 1-chain

18 if move = 0 then

19 align clockwise direction to the direction it sees the other agent in its chain;

// At this point all agents in same chain agree in one
particular direction

20 else if B+ 1 < round < B+ 2n+ 1 then
21 round + +;

22 if C(t.) is symmetric and e; is in the chain of r then

23 ‘ wait;

24 else

25 if r is not a part of an i—chain where i > 2 then

26 L L move clockwise;

27 else

28 if In C(t.) all chains are Singleton 1—chain then

29 ‘ align clockwise direction with global clockwise direction and terminate;
30 else

31 L change state to Init;
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In state PreRoundabout, agents execute Procedure 6 ( Procedure ROUNDTHERING-I)
for 2n + B + 2 rounds, where B is the bit-length of IDs. In the first B 4+ 2 rounds, if no
symmetric configuration arises, agents in the same 1-chain agree on a clockwise direction as
follows:

In round ¢ (1 <t < B), each agent checks the ¢-th bit of its ID (from the right). If it’s 1,
it moves inward within its chain; otherwise, it stays. If symmetry arises during this phase
due to a missing edge e;, = wv in an 1-chain, agents on v and v move away, resulting in
Case-I1I or Case-IV. On the other hand, if symmetry does not occur until the B—th round, all
1-chains reduce to 0-chains of two agents due to their unique Ids. If no symmetry occurs by
round B, then in round B + 1, the agent with the lowest ID in each 0- chain moves clockwise.
In round B + 2, the other agent observes this movement and adopts the same direction,
ensuring agreement within each chain. For the next 2n rounds, agents follow their clockwise
direction unless their chain includes the missing edge or has merged into a larger chain. note
that if after 2n rounds all of them are still singleton 1-chain then they agree on chirality as
all of them has same clockwise direction. If one pair of chains has different clockwise sense
then within 2n rounds, at least one chain moves n times, confirming formation of a larger -
chain (¢ > 2). In this case agents again change state to Init leading to Case-IV.

Procedure 7 MERGE-0T01(r,C(t.))

1 if O-chain exists A no chains are in FC then

2 if r is part of 0-chain and at least one adjacent chain is 1- chain then
3 if exactly one nearest adjacent 1-chain then

4 ‘ move in the direction of the 1-chain;

5 else

6 L move clockwise;

7 else

8 L change state to Init;

In state 0-Merge-1, the agents execute Procedure 7 (Procedure MERGE-0T01). This
runs until the configuration contain at least one chain in FC or, the configuration contains
no O-chain. In this procedure an agent in a 0-chain moves in the direction of the nearest
1-chain if the 1-chain is adjacent to it. In case of tie (i.e agent in the 0-chain sees adjacent
1-chains in the same distance in both clockwise and counter clockwise direction) the agent
moves in clockwise direction. This ensures after a finite time the configuration contains no
O-chains and there must exist at least one i—chain where ¢ > 2 (Case-IV).

In state Merge-I, agents execute Procedure 8 (Procedure MERGE-I) until all 0-chains
and visibly undirected 1-chains (i.e., all chains in N'FC) are eliminated. Note that for all
occupied nodes in all 0-chains and visibly undirected 1-chains in state Merge-I are singleton.
Since at least one i—chain (i > 2) exists, there exists at least one 0-chain or undirected
1-chain which is adjacent to such a chain or a visibly directed 1-chain. If a 0-chain is adjacent
to exactly one such chain in direction D, its agent moves in direction D; if adjacent on both
sides, it moves clockwise. This way the 0-chains will get merged in ¢—chains where ¢ > 1 and
makes a larger chain.

Now, if a singleton 1-chain is adjacent to an i—chain (¢ > 2) or a visibly directed 1-chain,
its agents move outward. This move ensures that at least one moving agent among these
two either gets merged to a larger chain or makes a singleton 0-chain which will be further
merged into a larger chain (using Procedure 8). This process ensures that, in finite time, all
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Procedure 8 MERGE-I(r,C(t.))
1 if 3 chain in NFC then

2 if r is in a 0-chain A fi_ (v(r)) = 1 then
3 if (exzactly one of adjacent chain of r is in FC in direction D then
4 ‘ move in the direction D
5 else if Both adjacent chains of v are in FC then
6 ‘ move clockwise;
7 else if r is in a Singleton 1-chain Cp(u,v) then
8 if both adjacent chains of the chain of Cp(u,v) are in FC then
9 ‘ move outwards of the chain;
10 else if Ezxactly one adjacent chain Cp(u',v") of Cp(u,v) in FC then
11 if r is at v then
12 L move in direction D;
13 else
14 L change state to Init;

0-chains and undirected 1-chains are eliminated.

At this point all agents are in state Init and there are no 0-chains or visibly undirected
1-chains. Now if the configuration at this time is not asymmetric, the agents check if the
configuration is global or not. If the configuration is not global then number of visibly
directed chains having one particular direction must be same with visibly directed chains in
the reverse direction (note that the count can be 0 too). In this scenario if there are visibly
undirected chains then agents changes state to Oscillate and otherwise if all chains are
visibly directed they changes state to Merge-II.

In state Oscillate, the agents execute Procedure 9 (Procedure GETDIRECTED()). The
main aim of this procedure is to make all chains visibly directed. This procedure is executed
by each agent for 2B + 2 rounds. In the first round (i.e., round = 0) , the agents basically
ensures that the terminal nodes of a visibly undirected chain becomes singleton. This is done
by the agents located at a terminal node of a visibly undirected chain. If the node is not
singleton then all agents except the agent having the lowest ID at that node move inwards
the chain. For the next 2B rounds, in each odd round 2z 4+ 1 (x < B), singleton agents at
terminal nodes check the (x + 1)-th bit of their ID. If it is 1, they move inward; otherwise,
they stay. In each even round 2z (x < B), agents that moved in the previous round check if
the chain is now visibly directed. If so, they wait; otherwise, they move outward. Note that,
after 2B + 1 execution of procedure GETDIRECTED(), all chains becomes visibly directed
due to the fact that there must exist one & < B such that ID,y1(r1) # IDz41(r2), for any
two agents 71 and 79 at the singleton terminal nodes of the same chain. So, at the 2B + 2-th
round all chains become visibly directed and all agents changes state to Init.

Note that as described earlier, if the configuration is not global still now, then the agents
change their state to Merge-II. At state Merge-II, the agents execute the Procedure 10
(Procedure MERGE-II()). The main aim of this procedure is to ensure that number of chains
decrease. Note that when all chains have visible direction and the configuration is not global
then there must exist two adjacent chains whose directions are facing each other. Using this
fact, in this procedure, two adjacent chains facing each other must move towards each other
until they become a single chain. Note that if one such chain contain a missing edge in a
symmetric configuration at some round then in that round no agent of that chain moves.
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Procedure 9 GETDIRECTED(r, C(t.))

1 if round = 0 then

round + +;

if v(r) is at terminal of an i—chain without visible direction and i > 2 then
L if fi: (v(r)) > 1 and r is not the lowest ID agent on v(r) then

(ST I

move inwards of the chain;

6 else if 1 < round < 2B then
// B is the ID length uniform for each agent as homogeneous
7 round + +;

8 if v(r) is terminal node of an i— chain without visible direction where i > 2 then
9 if round — 1 =2z 4+ 1 for some x < B then

10 if osc_wait = 0 then

11 if ID,y1(r)=1 then

// ID,(r) is the x—th bit of the ID of r from right

12 ret = 1;

13 move inwards of the chain;
14 else

15 if the chain containing v(r) is visibly directed then

16 ‘ osc_wait = 1;

17 else

18 if ret =1 then

19 ret = 0;

20 L move outward of the chain;

21 else if round > 2B then
22 L change state to Init

Since in each round one of the two adjacent chain can move they will eventually merge
together. Note that this procedure is executed until there is no more adjacent visibly directed
chains with their direction towards each other. At this stage the agents change state to
Init again.

Due to merging, the number of chains decreases. However, merging two visibly directed
chains results in a longer visibly undirected chain. If the configuration is still not global,
agents are guided back to state Oscillate via GUIDER(), and re-execute GETDIRECTED()
to ensure visible direction for all chains. This process repeats until, in the worst case, only
one visibly directed chain remains, making the configuration global. This way the agents can
achieve chirality.

3.1.2 Correctness and Analysis of Algorithm ACHIRAL-2-CHIRAL

Before proving the correctness of Algorithm ACHIRAL-2-CHIRAL, let us first define the
necessary notations for the proofs. We define Zy(t) and Z;(¢) to be the number of 0-chains

and visibly undirected 1-chains in C(¢) respectively. We define ®(t) as ®(t) = Zo(t) + Z1(¢).

We denote the set of all chains in C(¢) that are in N FC as Sg(t). and the set of rest of the
chains in C(t) that are in FC as S} (t)
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Procedure 10 MERGE-II(r,C(¢.))

1 if 3 at least a pair of adjacent visibly directed chains such that directions of them are
towards each other then

2 if r is a part of such a chain and e;, is not a part of chain of r then
3 L move towards the direction of such adjacent chain;

4 else

5 L change state to Init;

» Lemma 13. Let C(ty) be a configuration where all agents are in state Merge-I and
®(tg) > 0. Then, there exists a chain Cp(u,v) € NFC and a round ty > to such that in
configuration C(ty), all agents that were part of the chain Cp(u,v) have merged and become
part of chains in the class FC.

Proof. Since in C(tp), the agents are in state Merge-I, there must exist at least one chain
from the class FC. Also, it is given that at least one chain from class NFC exists in C(to).
Then there must exists an adjacent pair of chains Cp(u1,v1) € NFC and Cp(uz,ve) € FC.
First note that, Cp(u1,v1) is either a singleton 0-chain or a singleton 1-chain as agents
can have state Merge-I only after they execute the first two rounds of procedure 4, which
ensures the claim. Now there can be two cases, either Cp(u,v1) is singleton 0-chain or
singleton 1-chain.

Case-I: In this case, let us consider Cp(u1,v1) is a 0-chain (in this case u; = v1). Let
Cp(uz,v3) € FC is adjacent to Cp(ui,u1). Let another adjacent chain of Cp(u1,v1) be
Cpr(us,vs) (if exists). Let us first consider the case where Cps(us,v3) ¢ FC. In this case
the agent on u; in C(ty9) moves in direction D (following Procedure 8) until it reaches the
adjacent node of ug, say ub that is in (u1,us)p at a round, say t; > ty. Note that, the chain
Cp(ug,v2) in C(ty) changes to a 2-chain C'p(uj,v2) in C(t1). So, for this case taking ty = t;
and Cp(u,v) = Cp(uy,vy) suffices our purpose. Now, for the case where Cp/(us,v3) € FC,
without loss of generality let us assume the agent in u; moves towards Cp(uz,v2). Now
similarly the agent merges with Cp(ug,v2) at some time ¢t > ty creating the new 2-chain
Cp(uh,v2) in C(t2). For this case, assuming ty =t and Cp(u,v) = Cp(u1,v1), suffices our
purpose. Note, here the adversary can not stop the movements of the agent in u; without the
agents agreeing on chirality. Because, stopping the agent to move from a singleton 0-chain by
removing an edge would make the configuration asymmetric, which ensures that the agents
will get an agreement on chirality.

Case-II: In this case, let us consider Cp(uy,v1) is a singleton 1-chain (in this case
dp(uy,v1) = 1). Let Cp(ua,v2) € FC be adjacent to Cp(uy,v1). Let 71 and ro be two agents
at uy and vy respectively in C(tg). Let Cp/(uf,v]) be another adjacent chain of Cp(uq,vy)
in C(tg). Now there can be two subcases.

1. Cp/(ul,v]) ¢ FC in C(tg): Let Cpr(ug,v3) be the last chain from the class N FC
in direction D’ from chain Cp(u1,v1.5) and Cp (uq,v4) € FC be adjacent to Cpr(usz, v3) in
direction D’. If we can prove that all agents of at least one chain among Cp(uy,v1) and
Cp(usz,v3) in C(tp), merges with chains among Cp(uz,v2) and Cpr(ug,v4) then we are done
with this case. For the sake of contradiction, let us assume there exists agents, say 71, and )
in chains Cp(u1,v1) and Cpr(ug, v3) respectively (in C(¢g)) that do not merge with any of
Cp(ug,vs) or Cpr(ug,vy). Note that ) and )}, can not be at vy and vz in C(tg) respectively.
This is because, otherwise according to Procedure 8 agent r] and r} first move in direction
D and D’ respectively and forms singleton 0-chains adjacent to Cp(uz,vs) or, Cp(ug, v4)
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respectively in C(to + 1) (if not already merged with Cp(ug,v2) or Cpr(ug,v4)). Again,

these agents execute Procedure 8 and | starts moving in direction D and r} in direction D’.

Without loss of generality let us assume that ] be the first agent that reaches u}, before r
reaches u) where, uf is the vertex adjacent to us in the arc (vy,us)p and uj is adjacent to
ug in (v3,uq)pr. This implies r{ merges with Cp(us,v2) and becomes a part of the chain in
FC, which contradicts our assumption. So, now let r and r} is at uy and uz. As described
in the procedure 8, there must exists a time t3 > ¢y when both agents those were on v; and
vz merges with the chains Cp(ug,v2) and Cpr(ug,v4) respectively. So, in C(t3), r} forms
a singleton O-chain that is adjacent to the chain Cp(u2’,v2) and rj also forms a singleton
0O-chain that is adjacent to the chain Cpr(ulj, v4) where, v}, and u), are adjacent vertices of us
and wuy respectively which are in the arcs (vi,u2)p and (vs, uq)ps respectively. Let without
loss of generality, dp(u1,ub) < dp(uz,u}). Then in C(t3 + dp(uy,uy) — 1), r} reaches uf,
where uj is adjacent to uh in direction D’ from w}. This implies r; merges with the chain
Cp(ug,ve) and forms Cp(uy,ve) € FC. This contradicts our assumption. And so, the claim
is true.

2. Cp/(uy,vy) € FC inC(tg): First we consider the distances dp(v1,uz2) and dpr(ug, u}).
First let us assume that dp(vy, us), dps (u1,u}) > 3. In this case, while executing Procedure 8,
r1 and 7o first move away from each other and create two O-chains. After that r; moves
towards v} in direction D’ an ro moves in direction D until they reach v and (u} )’ respectively
where u), is adjacent to us in direction D’ and (u})’ is adjacent to u} in direction D. This
way both agents of chain Cp(u,v1) from configuration C(ty) merges with chains among
Cp(ug,vs) and Cpr(ug.v)) in C(t1) where ¢1 = to + max{dp(v1,ub), dp (ug, (u})')}. Now let
exactly one among dp(vy,us) and dp/(u1,u)) be greater than 3 and the other is exactly 2.
Without loss of generality, let dp(v1,u2) > 3 and dp/(u1,u)) = 2. In this case, as described
earlier in C(tp) both 71 and ro move in the opposite of each other. This move ensures that rq
merges with Cps (u],v]) after moving in C(tp) and forms a new chain Cp/((u})’,v]) € FC
in C(tg + 1) and r9 in C(tg + 1) creates a 0- chain which is adjacent to Cp(ug,ve) € FC
in direction D and also to Cp/((u})’,v]) in direction D’. Let without loss of generality
according to Procedure 8, 73 moves in Direction D in C(tg + 1). Now in C(to + dp (v, usz)),
r9 also merges with the chain Cp(usg, v2) from the configuration C(tp) creating a new chain
Cp(uh,v2) € FC, where uj is adjacent to ug in direction D’. So for these cases also all
agents of chain Cp(uy,v1) from configuration C(ty) merge and form chains in class FC.
Now if both dp(v1,u2) = dps(u1,u}) = 2, then in C(tp + 1), r1 merges and creates chain
Cp/((u}),v]) € FC and ry merges and creates chain Cpr(ubh,v2) € FC. Note that, the
adversary can not stop any move by any agent when all of them are in state Merge-I by
removing edges without agents achieving chirality agreement. This is because, to do that
adversary has to make the configuration asymmetric, and as a result of that, agents will
achieve chirality.

So, for any configuration C(t) for any to, if agents are in state Merge-I and ®(ty) > 0
then we can see that there exists one chain from the class NFC in C(to) and ty > to such
that all agents of that chain merges with other chains to form a chain in FC in C(¢s). Also,
ty —to = O(n) for all of these cases. <

» Corollary 14. Let in C(to) all agents are in state Merge-I and ®(to) > 0. Then Ity >0
such that in C(ty), ®(t5) = 0 and agents are in state Init.

Proof. Since agents are in state Merge-I and ®(¢p) > 0, by Lemma 13, there exists a round,
say t; within O(n) rounds from ¢y such that ®(¢;) < ®(tg) — 1. Now if ®(¢1) = 0, we are
done. Otherwise, in C(#;), there must exist at least one chain in N'FC, and, so agents are
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still in state Merge-I. Now using this same argument recursively we can conclude that within
O(In) (I being the number of agents) rounds from fo, there exists a round #; such that ®(ts)
becomes 0 and agents are still at state Merge-I in C(t};). Now, in C(#}; + 1), since there are
no chains in N'FC, agents change state to Init. So, taking Ty = T]’c + 1 is sufficient for the
proof. |

» Lemma 15. Let C(tg) be a configuration in which all agents are in state 0-Merge-1. Then,
within finite rounds, there will be a time t¢ such that exactly one of the following occurs.

1. all agents achieve chirality at some round t such that to <t < ty.

2. InC(ty), ©(ty) =0 and all agents are in state Init.

Proof. In C(ty), all agents are in state 0-Merge-1. Now, if C(#p) does not contain any
singleton O-chain or, has at least one chain in FC, then all agents change their state first to
Init . Let at C(tp + 1), all chains be in FC. For this case, taking Ty = to + 1 suffices. On the
other hand, if at C(typ + 1) there is at least one chain in N FC, then within constant round
the agents changes state to Merge-Iand by Corollary 14, there exists a time t; < to + O(In)
such that in C(¢s), either chirality is achieved, or ®(¢;) = 0 where all agents are in state
Init, and we are done.
So, let us now assume that C(tg) contains at least one 0-chain and no chains are in FC.
Also, as described in Lemma 13, an agent changes state to 0-Merge-1 at the third round of
execution of Procedure 4. So, all chains of C(ty) that are in N'FC must be singleton chains.
At this point, as the agents are in state 0-Merge-1, they begin executing Procedure 7
(Procedure MERGE-0T01()). Note that, in C(tg) there must exists two adjacent chains
one singleton 0-chain Ch; = Cp(u1,u1) and another singleton 1-chain Chy = Cp(usg, va).
According to the procedure 7, agent in Chy, say r, moves in direction D, towards Chy until
it reaches u} at time say t; for some t; > ty, where u) is adjacent to uy in direction D.
Note that between tg and t1, if the adversary tries to stop any move by some agent, the
configuration becomes Asymmetric and agents agree on a chirality, and then we are done.
So, let us assume chirality can never be achieved in finite time. In this case, within finite
time (i.e., in O(n) rounds), the agent r merges with Chy from the configuration C(¢y) and
together they form a new chain Cp(ub,v2) € FC. Now, as argued initially in this proof,
within O(1) rounds after ¢1, there exists a time ¢; when the agents change state to either
Merge-I, or Merge-II, or Oscillate . In C(#]) agents were in state Init with ®(¢}) =0 if
agents change state to Merge-II, or, Oscillate, at round t’l. So, taking t’l =ty is sufficient
for this case. Now in C(¢}) if agents change state to Merge-I, then from Corollary 14 , within
further O(In) rounds there exists a round t¢q, such that either agents achieve chirality at
round ¢, or, agents will have ®(t2) = 0 and state Init in C(t2). So, taking ty = to suffices
for this case.

<

» Lemma 16. Let C(tg) be the first configuration where all agents are in state PreRoundabout

for some ty > 0. Then, exactly one of the following statements is true.

1. there is a t; < to+ 2n+ B+ 1 such that in C(t1) all agents change state to Init, then
in further constant rounds to one of the following states 0-Merge-1 or Merge-I, or
Oscillate

2. in C(to + 2n+ B + 1), all agents achieve chirality.

3. inC(to + 2n + B + 1), there exists a chain from the class FC.

Proof. Since the agents change state to PreRoundabout, in C(tg), all chains are singleton
1-chains. Then the agents start to execute Procedure 6 for 2n 4+ B 4 2 rounds. We first claim
the following.
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> Claim 17. Let all agents at C(to) be in state PreRoundabout for the first time. Then,

exactly one of the following is true.

1. 3 t; <ty + B such that in C(¢1) all agents changes state to Init and then in further
O(1) rounds change state to exactly one of 0-Merge-1, Merge-I or, Oscillate.

2. in C(tg + B + 1) all chains are singleton 1-chain, and for any chain, both agents have the
same chirality.

Proof of Claim: Note that during the first B execution of Procedure 6, in round tg + x
(0 < & < B —1), each agent checks the x + 1-th bit of their ID and if it is 1 it moves in
the direction of the other agent in the chain otherwise it stays at the same node. Note
that, if at some round tg + = both have their  + 1-th bit 1, they cross each other and the
1-chain remains a 1-chain. This is also true if both of them have their & 4+ 1th bit as 0. Note
that, during this move, the adversary can interrupt the movements by removing one edge
of a chain making the configuration symmetric. In this case, the agents, say r; and 73, in
the chain with a missing edge move outwards on that round, and all agents change state
to Init. Note that since [ > 3 in C(tp), there are at least two chains. Now, suppose that
after this move, agents r; and ry each create a singleton 0-chain. In this case, the agents
currently in state Init, eventually transition to state 0-Merge-1 in 3 more rounds. On the
other hand, if either 1 or ro merges with another chain during the outward move and forms
an i-chain with ¢ > 2, then the agents transition to state Merge-I within 3 more rounds,
provided that there are still chains remaining in the set N/ FC. If no such chains remain,
the agent eventually transitions to the state Oscillatein the next round. So, if we assume
that, to interrupt the agent’s move, the adversary removes an edge to make the configuration
symmetric, then this leads to the first point of claim 1.

So, let us now assume that the adversary never removes any edge to interrupt the agent’s
move that would make the configuration symmetric. For this case, let us choose any singleton
1-chain arbitrarily. Let r; and 75 be the agents on this chain. Let the ID of r; and ry first
differs at the y-th bit from the right. So at round ¢y + y — 1, one of r; and r, moves towards
the other, and the other remains. So, they form a 0-chain with two agents. Now, since all
agents have different IDs and all of them differ at some bit y < B, at C(tg + B) all chains are
0-chains with two agents. Now, let us consider one such arbitrary 0-chain with two agents
r1 and ro. At round ¢y + B, the lowest ID agent of them (W.L.O.G say r1) moves in its
clockwise direction, making each chain a singleton 1-chain again. Now, at round tg + B + 1
when 75 sees that 71 is one hop away in a particular direction, 5 also agrees on the same
clockwise direction as r1. We call a singleton 1-chain locally chiral, if both the agents on
the chain have the same clockwise direction. So, we proved that, if the adversary does not
interrupt any move, all chains will be locally chiaral in C(ty + B + 1). So, we prove that
point 2 of the claim is true if point 1 is not true. <
So, if not already changed to one of the following states i.e., 0-Merge-1, Merge-I, Oscillate,
from round ¢ty + B + 1, all agents start to move in clockwise direction for 2n consecutive
rounds if they are still part of 1-chains and no missing edge in their chain. We claim that if
all agents do not have the same clockwise direction, then in this 2n round, there must exist
one pair of chains that get merged and form a chain in FC. Note that, since [ > 3, there
must be at least two chains in C(tg), which assures the existence of at least two singleton

1-chains. Let us assume all agents do not have the same direction agreement in C(to + B + 1).

This implies there are two locally directed adjacent singleton 1-chains, say C'hy and Cho,
whose clockwise direction faces each other. Now, the adversary can stop them from merging
if both of these chains are forced not to move for at least n rounds each, as the distance
between them can be at most n. But, if Chy is stopped for n rounds, Chy moves for those
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n rounds, and vice versa. So, Ch; and Chs merge and form one chain in FC. So, it is
evident that, if all agents do not have the same clockwise direction in C(t9 + B + 1), then
in C(tg + 2n + B + 1) at least one chain from the class FC exists. Otherwise, if all agents
have the same direction in C(to + B + 1) then the adversary can create both the following
configurations as C(to + 2n + B + 1). Either, all chains are still singleton 1-chain or, there
exists at least one chain from FC. So, if in C(tg + 2n + B + 1) all chains are still singleton
1-chain, we can conclude that agents have achieved chirality or, in C(tg 4+ 2n + B + 1), there
must exists a chain in FC and agents change state to Init in the next round (According to
Procedure 6). This concludes the proof. <

» Corollary 18. Let C(tg) be the first configuration where all agents are in state PreRoundabout.
Then in C(ty), ®(to) = & and within O(In) rounds, there ezists a round t; such that ezactly
one of the following is true.

1. all agents achieves chirality in C(ty)

2. InC(ty), ®(ty) =0 and all agents are in state Init.

Proof. Let C(t) be the first configuration when all agents are in state PreRoundabout. This
implies that, in C(tg), all chains are singleton 1-chains. Thus, each chain is from the class
NFC and contains exactly two agents. So ®(tp) = % Now, from Lemma 16, one of the
following three scenarios can occur.

1. there is a t; < top + 2n + B + 1 such that in C(¢;) all agents change state to Init and
in further constant rounds to one of the following states 0-Merge-1 or Merge-I, or
Oscillate

2. in C(tp + 2n + B + 1), all agents achieve chirality.

3. in C(tp + 2n + B + 1), there exists a chain from the class FC and agents change state to
Init.

Now, for case 2, we are already done. For Case 1, at C(t1) agents are in state Init,
t1 < to+2n+ B+1. Now, if in C(¢;) there are no chains in N FC. in this case agents change
state to Oscillatein round ¢; from Init. So, taking ¢ty = ¢;, we are done for this case. So
let there be chains from class N FC in C(t1). So, within O(1) further rounds, there is a round
to such that at ¢o, the agents change state to either 0-Merge-1 or Merge-I. Now if at C(t2)
agents are at state Merge-I, then by Corollary 14 within O(In) further rounds there exists a
round ¢y such that either chirality is achieved in C(ts), or ®(t5) = 0 with each agents being
in state Init. Similarly, we can say the same for the case where in C(¢2) all agents change to
state O-Merge-1 from Lemma 15.

For Case 3, at C(tg + 2n + B + 1), there exists a chain from the class FC. This implies
that, in the next configurations all agents will have state Init(according to Procedure 6)
and in constant further rounds there is a round ¢3 such that in C(¢3) agents either change to
state Merge-I, or Oscillate or Merge-II.

Now, if agents change state to either Oscillate, or Merge-II at t3 then in C(¢3),
®(t3) = 0 and all agents are in state Init. So, taking ¢y = t3 is sufficient for this case.

Now for the case where in t3 agents change state to Merge-I, by Corollary 14, within
further O(In) rounds there exists a round ¢4 such that either agents achieve chirality at t4
or, in C(t4), ®(t4) = 0 and all agents are in state Init. Now, taking ¢; = t4 suffices for this
case. <

» Lemma 19. Let C(to) be the first configuration when all agents are in state Roundabout,
for some ty > 0. Then, exactly one of the following statements is true.
1. 3¢ <tg+n such that at C(t1) all agents achieve chirality.
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2. 3 t1 = to+n+ o(l) such that at C(t1), all agents change state to exactly one of the
following. PreRoundabout, Merge-I, Oscillate, or, Merge-II

Proof. Let all agents at C(tp) be in state Roundabout for the first time. Then, all chains
in C(tg) are singleton 0-chains. Thus ®(ty) = [. In this case, the agents start executing
Procedure 5 for n consecutive rounds. In this procedure, an agent moves along its clockwise
direction for n consecutive rounds unless within these n rounds it forms either a 0-chain with
multiplicity, or an ¢—chain, where ¢ > 1. Note that, during this move, the adversary can not
stop the movement of an agent by removing an edge and without making the configuration
asymmetric. And, agents can achieve chirality from an asymmetric configuration So, if the
adversary stops movement by any agent at a round ¢; < ty + n, agents can achieve chirality
in configuration C(¢1). Now, let the adversary not try to interrupt any agent by removing
any edge. In this case, if all agents in C(¢y) have the same clockwise direction. Then, at
C(to + n), all agents will remain part of a singleton 0-chain. So, if this is the case, then at
C(to + n) agents can agree upon the chirality. Now, if at C(¢y), agents do not have the same
clockwise direction, then there exist two adjacent agents and they move towards each other.
Now, they either form a 0-chain with multiplicity or one 1-chain. Now, since [ > 3, other
agents may also merge in this chain and form a 0O-chain with multiplicity or, visibly directed
1-chain, or, visibly undirected 1-chain, or, i—chain where ¢ > 2. Note that, no singleton
0-chain would remain, as it would imply that a singleton 0-chain from C(ty) completed n
clockwise moves without meeting any other, which is not possible as agents have different
clockwise directions. For this case, at C(tg + n) agents change state to Init.

Now, in the next round (i.e., to +n + 1), if all chains are visibly directed, then either the

configuration is global (in that case chirality is achieved), or they change state to Merge-II.

Now, if all chains in round ty + n + 1 are not visible directed, but all chains are from
the class FC, then either the configuration is global for which all agents achieve chirality or,
they change state to Oscillate. For the above two cases, taking t; = tg +n + 1 is sufficient
for the proof.

On the other hand, if at tg + n + 1, all chains are not from class FC, then either they
achieve chirality (if the configuration is global or asymmetric) or, they change to state
PreMerge-I. If agents change state to PreMerge-I, then agents execute Procedure 4 for 3
consecutive rounds. In the first two rounds, all O-chains with multiplicity become either
a visibly directed 1-chain or, singleton 1-chain, and all 1-chains with multiplicity on both
vertices become i—chain where i > 2. So, at the third round of executing Procedure 4 (i.e.,
at round tg + n + 4), if all chains are visibly directed then either chirality is achieved, or
agents change state to Merge-II. On the other hand, if all chains are not visibly directed,
but all are from FC, then agents either achieve chirality (if the configuration is global), or
they change state to Oscillate. Now there is further one case that can occur at round
to + n + 4, that is at this round, there are chains from the class N'FC, in this case, either
agents achieve chirality (if configuration is global or, asymmetric)or, agents changes to states
either PreRoundabout or, Merge-I. (state 0-Merge-1 does not occur as there can not be
any O-chain at ¢y +n + 1 as described above). So, for the above cases, taking t; = tg+n+4
is sufficient. |

» Corollary 20. Let C(tg) be the first configuration when all agents are in state Roundabout,
for some to > 0. Then, ®(to) =1 and there exists a round ty < to + O(In) such that in C(ty)
exactly one of the following is true

1. all agents achieve chirality.

2. ®(ty) = 0 and all agents are in state Init.
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Proof. From Lemma 19 it is clear that at C(to), ®(to) = . Also from the same lemma we
can conclude that 3 ¢; < tg+ O(n), such that at ¢; either chirality is achieved or, at t; agents
are in one of the following states PreRoundabout, Merge-I, Merge-II, or, Oscillate.

If at ¢; agents change state to Oscillate, or Merge-IIthen we take ¢ty = t;. In this case,
®(ty) =0. And, in C(¢s), all agents are in state Init. On the other hand, if at ¢, all agents
are in state either PreRoundabout, or Merge-I, then by Corollary 14, and Corollary 18,
within further O(In) rounds there will be a round ¢ such that at ¢ either agents achieve
chirality or, in C(t2), ®(t2) = 0 with all agents in state Init. So, for this case we take t; = to,
which proves the result. |

» Theorem 21. For any 1-interval connected ring with | > 3 agents executing ACHIRAL-2-
CHIRAL, there exists a round ty < O(In) such that in C(ty), either chirality is achieved, or,
O (ty) = 0 where all agents are in state Init.

Proof. Let C(0) be any initial configuration with number of agents [ > 3. Now in C(0) if
all chains are in FC then ¢ty = 0, and we are done. So, let there exist chains from the class
NZFC in C(0). So, when agents execute Algorithm 2, they change state to state PreMerge-I.
In state PreMerge-I, agents execute Procedure 4. The agents execute this process for three
consecutive rounds. In the first two rounds, if the configuration is not global or asymmetric,
then all 0-chains with multiplicity become either a visibly directed 1-chain or a singleton
1-chain. And all 1-chain, with multiplicity on both vertices, becomes i—chain, where ¢ > 2.
Otherwise, chirality will be achieved, and we are done. So, let the configuration not be global
or asymmetric in the first two rounds of executing Procedure 4. Thus, at the beginning of
the third round of executing Procedure 4, say t1, there remains no 0-chain with multiplicity
or, 1-chain that has multiplicity on both the vertices. So, in C(t1) the chains can be either a
singleton 0-chain, a singleton 1-chain, or any other chains from the class FC. Now C(t;) can
be exactly one of the following configurations,

All chains are singleton O-chain in C(¢1). For this case, agents change state to state

Roundabout.

All chains are singleton 1-chain in C(¢1). For this state, agents change state to PreRoundabout.

3 a singleton 0-chain and a singleton 1-chain and # any chain from FC. For this case,

agents change state to 0-Merge-1.

3 a chain from FC. For this case, agents change state to Merge-I.
So, at t1 + 1, agents can be at any one of the following states, Roundabout, PreRoundabout,
0-Merge-1, Merge-I. Now, by Corollary 14, Lemma 15, Corollary 18 and Corollary 20,
Within further O(In) rounds from ¢;, there will be a round ¢y such that at t chirality is
achieved by all the agents or, ®(t) = 0. <

» Theorem 22. Let C(tg) be a configuration for some to > 0 such that in C(ty), all agents
are in state Init and ®(tg) = 0. Let C(tg) has p chains such that not all of them are visibly
directed. Then, 3ty > to such that in C(ty) the agents either achieve chirality or, in C(ty),
all of the p chains become visibly directed and in state Init.

Proof. Let C(tg) be a configuration where all agents are in state Init and ®(tp) = 0. The
existence of such a round is ensured by Theorem 21. Now if the configuration is global or,
asymmetric agents achieve chirality at ¢g. So, taking ¢ty = to would suffice. Now let C(to)
be neither global nor asymmetric. Now, since there are chains, not visibly directed, the
agents change state to Oscillate at round tg. Now, from round ¢y + 1 to round tg + 2B + 2,
all agents execute Procedure 9. Let Cp(u,v) be a visibly undirected chain in C(to + 1)
and at least one of u and v is of multiplicity. Note that Cp(u,v) € FC. So, by definition,
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dp(u,v) > 2. Now, in the first execution of procedure 9, only the lowest ID agents stay at
uw and v. All other agents of u and v (if they exist) move inside the chain, so that both u

and v become singletons. Let 7, be the agent at u and r, be the agent at v in C(tg + 2).

Now for the next 2B rounds starting from tg + 2, for round tg + 2z + 2 (0 < 2 < B), both
r, and r, check their (x 4+ 1)-th bit from right and if the bit is 1, they move inwards the
chain. Otherwise, they do not move. Now, for each round t; + 22 + 3 (0 < 2 < B), if any
agent among 7, and 7, moved in round ty + 2z + 2, it moves back. Note that, since the
chains are i-chains with ¢ > 2, halting the agents at nodes v and v, to move inward and then
outward, effectively removing an edge, results in an asymmetric configuration, which ensures
that the agents achieve chirality. So, let us assume the agents do not interrupt r, and r,’s
movement. Also note that the movement by r, and r, ensures that no chain breaks into
multiple chains or no two or more chains merge during this procedure. So the total number
of chains remains the same in each configuration from round ¢y to tg + 2B + 2. In that case,
since ID(r,) # I1D(r,), there exists y < B such that the y-th bit from the right is the first
bit that is different for r, and r,. So, at round ty + 2y, only one of r, and r, moves inward
the chain. So, in C(tog + 2y + 1) the chain Cp(u,v) becomes visibly directed. From ¢o + 2y + 1
to to + 2B + 1, agents in the visibly directed chain do not do anything. The above argument
is true for any visibly undirected chain in C(¢g 4+ 1). So at C(to + 2B + 2) all chains become
visibly directed. Further, all agents change state to Init. This concludes the proof. |

» Theorem 23. Let C(tg) be a configuration where all agents are in the state Init and all
chains are visibly directed. If the configation C(ty) contains p > 1 such chains, then within
O(n) rounds, there exists a round ty, at which the configuration C(t;) satisfies one of the
following:

all agents agree on a common chirality, or

all agents remain in the state Init, all chains are visibly directed, and the number of

chains has reduced to p' < p.

Proof. Let C(tp) be a configuration in which all agents are in state Init and all p chains
are visibly directed. If the configuration is global or asymmetric, then we are done, as
chirality will be achieved by the agents. So, let the configuration C(ty) be neither global nor
asymmetric. So all agents change their state to Merge-II. This implies that among p chains
there exists at least a pair of adjacent chains whose direction is towards each other. Let us

arbitrarily choose one such pair, and name them Ch; = Cp(u1,v1) and Chy = Cp(ve, us).

During the state Merge-II, agents execute Procedure 10. In this procedure, the chains Ch;
and Chs move towards each other by moving according to the direction of the chains if there

is no missing edge in of C'hy or Chs. Without loss of generality, let C'h; has a missing edge.

If the configuration is asymmetric due to the missing edge, then the agents achieve chirality,
and we are done. On the other hand, if the configuration is symmetric, then agents in Ch;
do not move, but agents in C'hy move towards Chy. So, the distance between Chy; and Chy
decreases at least by one and at most by two in each execution of Procedure 10. So, there
exists a time ¢; such that both Ch; and Chy merges and creates a new chain Chz € FC in
the configuration C(¢1) in expense of two chains(as the chain length will be greater or equals
to 2). Note that, Chs will not be visibly directed as both the terminal nodes are singletons

also as the initial distance between Ch; and Chs can be at most O(n), to t; — tg ~ O(n).

This will be true for all such pairs of visibly directed chains directed towards each other in
C(to). Let there be ¢ such pairs. So, until all ¢ pairs are merged, the agents in the already
merged chains do nothing. Now, there will be a time t5 > ¢; such that at t; there are

p' = p — q chains where ¢ > 0 and all chains are in FC but not all chains are visibly directed.
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Note that, for the same reason stated above, t3 —tg = O(n). In C(t2), all agents change state
from Merge-II to Init. Then at t5+ 1, all agents are in state Initand ®(t3+1) = 0. Then
by Theorem 22, within O(B) = O(logn) rounds from t, there exists a round t3 > t5 such
that either agents achieve chirality in C(¢3) or, in C(¢3) all p" = p — ¢ < 0 chains becomes
visibly directed along with all agents being in state Init. For this case, taking t; = ¢3 proves
the result. <

» Theorem 24. In any 1-interval connected ring with n nodes and l achiral agents (n > 1> 3),
where each agent has O(logn) memory and the agents are initially placed arbitrarily on
the nodes, chirality can be achieved in O(In) rounds by executing the ACHIRAL-2-CHIRAL
algorithm.

Proof. By Theorem 21, we can conclude that for any arbitrary initial configuration C(0),
there exists a round ¢; within O(In) rounds from the initial configuration, such that if
chirality is not achieve till ¢; then in C(¢1) all agents are in state Init and ®(¢1) = 0. Now,
in C(t1) if all chains are not visibly directed then by Theorem 22 we can conclude that within
O(B) = O(log n) more rounds there exists a round ¢ such that if chirality is not achieved
till 5, all chains become visibly directed chains with all agents being in state Init, in C(t2).
Now, let at C(t3), there are p chains. If p = 1, then the direction of this chain is the agreed
direction for all the agents. On the other hand, let p > 1. For this case, by Theorem 23,
within further O(n) rounds, there exists a round t¢3, such that if chirality is not achieved by
ts, in C(t3), all agents are in state Init, all chains visibly directed and number of chains, say
p’ < p. If, p’ # 1, and chirality is not achieved, then then we can recursively use Theorem 23
until some time ¢4 > ¢3 such that if until ¢4 chirality is still not achieved then at C(t4), all
agents are in state Init there is exactly one visibly directed chain. In this case, agents can
agree on chirality using the direction of the chain. Note that in the worst case, there can be
O(l) chains in ¢; and each O(n) further rounds, the number of chains reduces by one. This
way, we can conclude that ts — ¢t = O(In). So, if we take t; = t4, we can conclude that,
from any initial configuration within O(In) rounds, the agents will agree on a chirality. <«

3.2 Algorithm DISPERSED

In this subsection, we describe the Algorithm DISPERSED. After chirality is achieved by the
agents and if the configuration is not dispersed, the agents first execute Algorithm DISPERSED
to achieve dispersion before achieving distance-k-dispersion. Note that, achieving dispersion
partially solves the open problem regarding dispersion from any arbitrary configuration for
any l-interval connected ring proposed in [1]. Let us have a high-level idea of the algorithm.

3.2.1 Overview of DISPERED

Now, we provide a brief overview of the subroutine DISPERSED(), which is designed to
transform the multiplicity nodes into singleton nodes to achieve dispersion. Let a configuration
have a multiplicity node in some chain Cow (T, H), where T and H are the first node and
last node, respectively, called tail and head, of the chain in clockwise direction. First, we try
to convert the multiplicity node, M say, that is nearest to the tail of the chain.
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Algorithm 11 DISPERSED(r,C(t.))

1 Cow (T, H) = chain in which r is located;
2 if Cow (T, H) contains a multiplicity then

3 M = multiplicity node in Cow (T, H) nearest to T'.;
4 T’ = Node adjacent to T in CCW direction;
5 H’ = Node adjacent to H in CW direction;
6 if e, ¢ (T’,H’)CW Voep € (T’,M)CW then
7 if r is at M then
8 if r is not least ID agent at M then
9 L move in clockwise direction.
10 else if r € Cow (M, H) Ar ¢ M then
11 L move in clockwise direction.
12 else if e; € (M, H')cw then
13 if r is at M then
14 if r is not theleast ID agent at M then
15 L move in counterclockwise direction.
16 else if r € Cow (T, M) Ar ¢ M then
17 L move in counterclockwise direction.

Let the chain be partitioned into two sub-chains, Cow (T, M) and Cow (M, H) in clockwise
direction with respect to the multiplicity M. Then, in this scenario, three cases may occur
according to the position of the missing edge e, (if it exists).

Case-I: There is no missing edge in the arc (7", H')cw, where T” is the adjacent node

of T in counterclockwise direction and H’ is the the adjacent node of H in clockwise

direction.

Case-II: The missing edge is in the arc (77, M)cow .

Case-III: The missing edge is in the arc (M, H ) ow .

For, first and second case, i.e., when there is there is no missing edge in arc (7', H')cw or,
the missing edge is in the chain (77, M)cw, then the agent with least ID on the multiplicity
M stay at its node and the other agents of the sub-chain Cow (M, H), except the least ID
agent at M, move in clockwise direction. This way, M becomes a singleton node. Now, for
the third case, i.e., when the missing edge is in the arc (M, H')ow, the agent with least ID
on the multiplicity M stay at its node and the other agents of the sub-chain Cow (T, M),
except the least ID agent at the multiplicity M, move in counterclockwise direction. In each
round during the execution of algorithm DISPERSED, the number of agents on a multiplicity
node decreases. Now, since there can be at most O(1) multiplicity points, within O(l) rounds,
the configuration becomes a dispersed configuration.

3.2.2 Correctness and Analysis of Algorithm DISPERSED

Let us first discuss some necessary notation for the correctness proof. We define the number
of unoccupied nodes in a configuration C(t) with ¢ (¢) for some time ¢. Note that if at some
round ¢, the configuration C(t) is dispersed, then 1(t) = n —I. Otherwise ¢(t) > n —1I. To
prove the correctness of the algorithm DISPERSED, we prove the following lemma first.

» Lemma 25. Let C(t) be a configuration where 1p(t) > n—1. Then ¥(t+1) < ¢(t) if agents
erecute DISPERSE in round t.
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Proof. Since ¥(t) > n —, there must exist a chain with multiplicity. Let Chy = Cow (T, H)
be any such chain. Let 77 and H’ be the nodes adjacent to T and Hin the direction CCW
and CW respectively. Note that 7" and H' are both unoccupied nodes in C(t). Let M be
the multiplicity node in C'hy that is nearest to T". Then, there can be three cases depending
on the position of the missing edge e; (if it exists). These three cases are,

1. e ¢ (T, H ) ow

2. ¢ € (T/,M)CW

3. e € (]\47 H/)CW

For cases 1 and 2, all agents of Chy in the arc (M, H)cw except the lowest ID agent at M
move clockwise according to algorithm DISPERSED. Note that due to this H' along with
becomes occupied in C(t+1). Also, while executing algorithm DISPERSED, no occupied nodes
become unoccupied. So for these cases (¢t + 1) < ¢(t). Now for case 3, all agents in arc
(T, M)cw move counterclockwise except the lowest ID agent at M according to algorithm
DISPERSED. This ensures that 77 becomes occupied in C(t + 1). Also, as no occupied nodes
in C(t) become unoccupied in C(t + 1), we can say ¥ (t + 1) < t(¢) in this case too. <

Now, using the above lemma, we prove the following theorem that justifies the correctness of
algorithm DISPERSED.

» Theorem 26. If at round t, the configuration C(t) is not dispersed but agents have chirality
agreement, then a dispersed configuration C(ty) will be reached within O(l) rounds from t.

Proof. Since the configuration C(t) is not dispersed, there must exist a multiplicity node.
Thus ¥(t) > n — 1. Also, the agents have chirality agreement. Thus, at ¢ agents execute
DISPERSED. Now by Lemma 25,in C(t + 1), ¢(t + 1) is at least one less than ¢(¢) (i.e.,
Pt +1) <¢(t) —1). Now, if at C(t + 1), (¢t + 1) is still strictly greater than n — I, using
the same argument, we can say there exists a round ¢y such that ¥(ty) =n — 1. So, C(ty)
becomes a dispersed configuration. Note that in C(¢) there can be at most n — 1 unoccupied
nodes. So t; —t is asymptotically equal to O(1). <

3.3 Algorithm DISPERSED TO k-DISPERSED

When all agents achieve dispersion and if £ > 1, then agents execute the algorithm DISPERSED
To k—DISPERSED to achieve Distance-k- Dispersion. Following this, a brief overview of the
algorithm is discussed.

3.3.1 Overview of the Algorithm

The agents execute the algorithm DISPERSED-T0-k—DISPERSED until the configuration is a
distance-k—dispersed configuration. If the configuration is not distance-k-dispersed, there
must exist a k-Link with more than one agent. In each round, a selected set of agents moves
either clockwise or counterclockwise so that the distance between at least one pair of agents
placed in adjacent occupied nodes in the same k-Link increases and no pair of agents placed
at adjacent occupied nodes in the same k-Link decreases. Further, it also ensures that agents
placed at adjacent occupied nodes, which are already at a distance more than or equal to k,
never decrease beyond k.

The priority is given to clockwise movement first in any particular round, say t. For
clockwise movement, the selected set is EAS(t). Agents in EAS(t) only move clockwise in
round ¢, if the missing edge e; is not adjacent to v(r) for any r € EAS(t) in the clockwise
direction. Otherwise, let ' € £AS(t) be the agent such that the incident edge of v(r’) in
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Algorithm 12 DISPERSED-TO0-k-DISPERSED(r,C(t.))

=

if C(t.) is not distance-k-dispersed then

2 if e;_ is not incident to v(r') in the clockwise direction for some r' € EAS(t.)
then
if r € EAS(t.) then
4 L move clockwise;
5 else
6 r’ = the agent in EAS(t.) such that e;, is incident to v(r')in the clockwise
direction;
7 K S = the k-Link such that ' € NSew (KS) ;
K S’ = the first movable k-Link in the clockwise direction starting from KS.
if r e NScow (KS’) then
9 L move counter clockwise;
10 else

11 L terminate;

the clockwise direction is the missing edge. Let v’ be the part of the k-Link K.S and K5’
be the first movable k-Link in the clockwise direction starting from K.S. Then the set of
agents in the set of NScow (K'S') move counterclockwise. We now provide a brief overview
of the correctness of the algorithm, ensuring that within a bounded time, any dispersed
configuration becomes distance-k-dispersed.

3.3.2 Correctness and Analysis of DISPERSED-T0-k—DISPERSED

» Lemma 27. If a configuration C(t) is not a distance-k-dispersed configuration for some
round t, then there exists a movable k-Link in C(t).

Proof. Let KSi,KSs,---,KS, be all the k-Links in C(t) and |KS;| = [; for all i €
{1,2,---a}= 1. Let I' C I such that |KS;| > 2,Vi € I’ and |KS;| = 1,Vj € I\ I
Let Len(KS;) = dew (T(KS;), H(KS;)) for all i € I. Then Len(KS;) < (I; — 1)k where
i € I' and otherwise Len(KS;) =0 (i.e., when j € I\ I).

If possible, let all K.S; be non-movable k-Links. Then the exact next k nodes in the
clockwise direction from the head of any KS; are unoccupied. Let, for the k-Link K.S;, the arc
with the next & unoccupied nodes is denoted as U;. We denote Len(U;) = k for all i € I. So
for every i € I', Len(K S;) + Len(U;) < l;k and for every j € I\I', Len(KS;) + Len(U;) = k.

Now, n = 37", Len(KS;)+ Len(U;) = 32 c p [Len(K S;) + Len(Uy)| + 32,4 p [ Len(K S;) +
Len(U;)] < 3 ,cp(lik) + 2k (as I' is not an empty set and assuming I\ I’ has 2 elements
without loss of generality). Now, from the above, we can say n < (I — x)k + xk = lk. But
this is a contradiction, as according to the assumption n > lk. Hence, among the « k-Links,
at least one movable k-Link exists. <

» Lemma 28. Let r be an agent such that 1’ is the next agent of r in clockwise direction in
C(t) for some round t. Let dow (r,r') > k in C(t), then ¥t > t, dow (r,r") > k in C(t1).

Proof. Let 3¢ > t such that in C(t'), dew(r,7') < k. This implies there exists ¢/ such that
t>t" >t and in C(t"), dow (r,r") decreases from k. This is possible only if, exactly one of
r or r' stays still while the other moves in round ¢”. If r moves in C(¢”). Then, it must have
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moved clockwise to reduce the distance from k further. This implies r € EAS(t') = r €
NScw (KS), for some movable k-Link KS. This implies r = H(KS). Thus d(r,r’') > k in
C(t")(by definition of a movable k-Link) which leads to contradiction.

So, now let 7/ move and r stays still in ¢”. Then, in C(¢"), ' must have moved coun-
terclockwise. This implies 3 k-Link K.S; such that ey is incident to v(rq) in the clockwise
direction where m = H(KS;). Let KS] be the first movable k-Link in the clockwise di-
rection starting from KS;. This implies, v’ € NScow (KS]) and r ¢ NScew (KS7). In
fact r = H(KS]) in C(t"”). Thus decw (r,r') > k in C(t") which is a contradiction to the
assumption that decw (r,r") =k in C(t”). Thus, for all ¢t; t, docw (r,r') > kin C(t1). <«

» Lemma 29. Let for some round t, dew (r,v") = k' < k where v(r) and v(r’) be two
adjacent occupied nodes in C(t). Then Vt' > t, dew (r,r') > k' in C(t').

Proof. If possible let 3 ¢; > ¢, such that at ¢1, dow (r,7’") decreases from k’. This implies
exactly one of r or, v’ moves in round t;. First, let r move while ' stays still. Then r must
have to move clockwise to decrease the distance. Which implies » € £AS(¢1) and hence
r = H(KS) for some movable k-Link KS. Thus in C(t1), k' = dew (r,7') > k which is a
contradiction as k' < k.

So, now let us consider that r stays still whereas r’ moves counterclockwise in C(¢1). using
similar argument as in second part of Lemma 28 we can say that there is a movable k-Link
KS’, such that r = H(KS') in C(t1), and thus ¥ = dew (r,7') > k in C(¢1) which is again a
contradiction. Thus for any ¢’ > ¢, dew (r,r') > k' in C(t'). <

» Lemma 30. Let C(t) be a configuration that is not distance-k-dispersed. Then there exists
a pair of agents r and v’ located on adjacent occupied nodes v(r) and v(r') such that:

1. r and 7’ belong to the same k-Link in C(t), and

2. dew(r,r") in C(t+ 1) > dow (r,7") in C(t).

Proof. Since the configuration C(t) is not distance-k-dispersed, there exists a k-Link such
that the number of agents on that k-Link is at least two. Also, by Lemma 27, in C(t) there
is at least one movable k-Link. Let K .Sy be one such movable k-Link. Let starting from
K Sy, all the k-Links in counter clockwise direction be KS1,KSs, -+ ,KS,. Let 0 <z < «
be such that KS, is the first k-Link with number of agents at least two in counterclockwise
direction starting from K.S; (including it too). Let r, = H(KS,) and 7/ be the next
agent of r, in the same k-Link in counterclockwise direction. Note that by definition
re € NSow (K Sp) C EAS(t) but rl, is not.

Now let the missing edge e; be not incident to v(ry) in the clockwise direction for some
ry € EAS(t). In this case, r, moves clockwise and 7}, does not move in C(t). Thus, taking
r =7l and r’ = r, is sufficient for this case.

Now let e; be incident to v(ry) in the clockwise direction for some r, € EAS(t). Let
ry is part of the k-Link K S, for some 0 < 2z < . Let K S! be the first movable k-Link in
the clockwise direction starting from K S,. Let us consider the set M = A\ NScew (K S.).
Now, let 7, be the last agent in M starting from H(KS.) in the counterclockwise direction.
Then, r, = H(K Sg) for some k-Link, with at least two agents. Now let 7, be the next agent
in the counterclockwise direction of r,. Now r, and r, are in same k-Link by definition
of NScow (KS.) and also in C(t) r, moves counter clockwise and r, stays still. Thus
dew (r,,7) increases in C(t + 1) from C(¢). So, taking r = 7, and r’ = r, is sufficient for
the proof. Note that for each case there exists a pair r and r’ in the same k-Link such that
v(r') is the adjacent occupied node of v(r) in clockwise direction and dew (r, ') increases in
C(t+1) <
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Note that in Lemma 28 we proved that any pair of agents on adjacent occupied nodes
separated by a distance greater than k can never be in the same k-Link further. So, the
number of k-Links never decreases. Also in Lemma 29, we proved that for any two agents at
adjacent occupied nodes in the same k-Link, their smallest distance never decrease. In the
worst case, let all agents be in the same k-Link in the initial configuration. So, to achieve
Distance-k-Dispersion, the smallest distance between the agents for each of O(l) pairs of
agents in adjacent occupied nodes, has to be increased at least k times. For O(l) pairs, the
total increase in distance should be O(lk) in the worst case. Now, by Lemma 30, in each
round, there exists a pair of agents in adjacent occupied nodes with distance strictly less
than k, such that their distance increases. So, in O(lk) rounds of executing DISPERSED-TO-
k—DISPERSED, the Distance-k-Dispersion will be solved. From this discussion, we have the
following theorem.

» Theorem 31. Let C(t) be any dispersed configuration in which all l agents possess chirality
at some round t. Then, by executing the algorithm DISPERSED-TO-k-DISPERSED, the agents
can achieve Distance-k-Dispersion within O(lk) rounds.

4  Conclusion

In this work, we studied the Distance-k-Dispersion (D-k-D) problem for synchronous mobile
agents in l-interval connected rings without assuming chirality. We introduced a new
technique that enables agents to simulate chirality using only local communication, bounded
memory, vision, and global weak multiplicity detection and thereby showing that chirality is
not a fundamental requirement for coordination in this model. With this insight, we solved
D-k-D—and hence the standard dispersion problem—from arbitrary initial configurations,
addressing an open question posed by Agarwalla et al. (ICDCN 2018) for even-sized rings.
Finally, we provided the first finite-time algorithm that solves D-k-D in O(In) rounds, where
l is the number of agents and n is the ring size.

An interesting direction for future work is to explore whether similar techniques for simu-
lating chirality can be applied in other dynamic graph topologies or under more adversarial
conditions, such as vertex permutation dynamism or weaker visibility models. Additionally,
the overall time complexity of O(In) is solely due to the chirality simulation step; the subse-
quent algorithms for dispersion and distance-k-dispersion are time-optimal. This raises a
natural question: What is the lower bound on the time required to simulate chirality in this
model? It would be really interesting to find out the answer to this question.
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